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The curvature tensor of a statistical manifold associated with a correlated-walk model is investigated. In the
model, a walker moves along a linear lattice right or left or stays, depending on the last steps. In the case of
symmetric walks, two jump probabilities and a stay probability) (specify the transition probabilities and
constitute a three-dimensiongdD) space. The 3D space is foliated by the stay probahility A Riemann
curvature, defined by the method of information geometry, on each 2D leaf is not only a function of two jump
parameters, but also a step tifNe The dynamic evolution of the Riemann scalar curvat@rand also the
asymptotic properties of the in N—c are investigated in detail. It is found that remarkable features appear
in the dynamic process of the. Such dynamic features of theare able to be well understood in terms of the
degree of correlation or the activity of stepping.NR-, each leaf is shown to approach the saddle surface
of R=—1 except for the leaf of ;=1. The exceptional leaf approaches the spherical surfatFé=o§‘. The
values ofR are shown to have relation to regularity of paths or stability of stochastic processes. The relation
to stability is also discussed by contrast with the valueR aff Fermi gases and Bose gases. It is shown that
the R’s of the leaves =0 and 1 are almost equal to those of Fermi gases and Bose gases, respectively, and
that theR'’s of the two leaves reflect the difference of the stability of the two leaves. The asymptotic property
of a one-parameter curvature, called theurvature, is also investigated. Thecurvature ab=1 is shown to
approach zero foN—oo or approaching equilibrium states. This suggests that the &erb curvature is a
universal property in a broader class of equilibrium systems including thermodynamic systems.
[S1063-651%97)02707-4

PACS numbsgps): 05.70.Ln, 05.40tj, 02.40—k, 02.50—r

[. INTRODUCTION a geometrical representation of approach from an initial un-
stable state to a stable equilibrium stg®& This interpreta-

A positive definite Riemann metric on thermodynamiction is consistent with the results for equilibrium systems:
state space was introduced by Ingardenal. [1] and The curvature for stable equilibrium systems becomes small.
Ruppeiner{2]. With the metric tensor one can evaluate the A walker of the RW model may move with step probabili-
Riemann curvature of thermodynamic state space. The theties given at random, that is, without correlation between
modynamic Riemann curvature was first calculated for sevsteps. In reality we find correlated motion almost every-
eral cases by Ruppein¢2,3]. The calculation led him to where. In successive papd®10], we examined the statis-
interpret the Riemann scalar curvature as a measure of effeical manifold associated with a correlated-wallCW)
tive interaction(see also Ref{4]). On the other hand, Jan- model. The space is spanned by two parameters representing
yszek and Mrugal@5—7] interpreted it as a measure of sta- the jump probabilities of the CW model. We there studied
bility on the basis of calculation of the scalar curvature forthe Riemann scalar curvatufe of the CW manifold, and
many thermodynamical models, including the modelsshowed that the time development of the CW manifold pro-
worked out by Ruppeiner. duces inhomogeneous expansion from a spherical surface of

Recently we tried to generalize the notion of the thermo-R=3 to a saddle surface &= — 1 through an era of violent
dynamic curvature as a measure of effective interaction ooscillations. Such behavior of the Riemann scalar curvature
stability to nonequilibrium process¢8—10. We introduced was shown to be well understood in terms of “stability” and
a metric tensor on a parameter space spanned by jump proterder parameter” of stochastic processes. In other words,
abilities characterizing a stochastic process of random or cothe calculation suggested that the interpretation of the Rie-
related walks, using the receipt of information geometry. Themann scalar curvature as a measure of stability might be
metric tensor for stochastic processes, being different fronuseful in the spaces of jump probabilities as well as in ther-
equilibrium thermodynamic systems, develops in time. Formodynamic state space.
instance, éD-dimensional random walkRW) accompanies In the present paper we take a more complicated model of
the expansion of a R-dimensional sphere. As a step time correlated walks, with an eye to investigating the space of
N increases, the Riemann scalar curvature fades away @smp probabilities characterizing the model. In the model, a
1/N. We regarded this decrease behavior of the curvature agalker moves along a linear lattice of infinite extension right
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or left, and sometimes stays. The probabilities of jump orSec. Ill we consider the process of a walker jumping or
stay are supposed to depend on the previous steps. Namestaying correlatively, and we introduce the statistical mani-
two successive steps are correlated. For simplicity we corfolds associated with the process. Then a method of numeri-
sider the case of symmetric walking, in which the number ofcal analysis of th&® is described and the numerical solutions
independent parameters specifying the transition probabiliare given. Thea curvature is analytically obtained. The de-
ties of jump or stay is three. The stay probability is repre-tails of the calculation are given in the Appendix. In the final
sented byry. Herery=1 means that the walker stays and section IV we derive the scenario above on the basis of the
stays again, andy=0 means that the walker stays and thennumerical solutions and the analytic solutions.

moves. The three-dimension@D) parameter space is foli-

ated by the stay paramete®,<1, and each leaf is 2D. I INFORMATION GEOMETRY, THERMODYNAMICS,

We examine the time development of the Riemann scalar AND STOCHASTIC PROCESSES

curvature of each leaf and also the asymptotic properties of ] ) . ) o

the leaf. We first recapitulate some main expressions in informa-

lows. TheR of every leaf starts from a spherical surface of SOmMe results of Ruppeind2-4], Janyszek and Mrugala
R=1. The homogeneous space immediately deforms to ahp—7}; @nd also some recent results of of8s-10).
inhomogeneous space and Reapidly decreases for a short

time. After that, theR turns to increasing and finally ap- A. Information geometry

proaches; for the leafro=1 and—1 for the leaves,#1. In Today information geometrjl 1] teaches us that a metric
the dynamic process of thR, we find remarkable features. g4 a one-parameter connection, calledatfo®nnection, can
The 2D space is characterized by three regions. A region has, naturally introduced on a parametrized famify
small values of thdk, and the region separates the other two:{p(x,9)| 9 Q} of probability density functiong(x,6),
regions from each other like a valley. In one side of thenerex is a random variabled is a parameter, anf is a
valley, theR is almost homogeneous. As the step time goegyarameter space. Modern differential geometry provides
by, the homogeneous region gradually extends, and becomggme elegant treatments of the spSc@ut these treatments
more and more homogeneous. The extending region thefye 1ot fundamental for the purposes of our research, so we

swallows the valley and also the other side. These dynamigyjoy the traditional method representing tensors by coordi-
features of thdR are shown to be well understood in terms of |54 components.

the degree o_f correlation or the activity o_f stepping. Further-  the metric tensor is defined by Fisher's information ma-
more, the differences of the asymptotic valuesRofare iy
shown to have relation to regularity of paths or stability of
stochastic processes. We note that the paths of the walkers of 9ij(0)=E[d;/9;/ 1= —E[d;9;/], 1)
ro#1 extend infinitely, while the paths of the walkers of .
ro=1 extend finitely. Thus we say that tReassociated with With /(x,6) =In p(x,6), the parameter-differential operator
continuous paths is smaller than tReassociated with dis- =dJ/d¢', and the expectation operatiddj - ] with respect
continuous paths. Generally speaking, the more regular ® the distributionp(x,6). The last equality is due to the
path the smaller thR. As another viewpoint we note that the normalization condition of probability. The metric tensor
R’s for the leafr,=1 and the leaf ,=0 are very similar to ~ gives an inner product for two vectors at a point.
the R's of Fermi gases and Bose gases, investigated by Jan- Thea connection is defined by
yszek and Mrugal§6]. They showed that the stability of the
ideal quantum gases can be measured by means dR.the T (6)=E
Actually we show that the difference of tHe between the 'k
two leaves can be well understood in terms of stability. ) ) )

We also investigate the asymptotic property of a one-Th? connecnqn pre_scrlbes_ a way of transporting a vector at a
parameter curvature, called taecurvature. Thea=1 cur-  Point to a neighboring point. In the case @#0, the con-
vature is found to approach zero, regardless @f in the nection reduces to the so-called Levi-Civitannection
limit of infinite time or approaching equilibrium states. We ©0_1 B
show also that the equilibrium distribution functions of the ik = 2(kGij + 9jGik— diGji) - ©)
ro# 1 leaves are members of the so-called exponential fa
ily but those of the leaf,=1 are not so. Meanwhile any
thermodynamic system is noted to have z&tol curvature. . .

It is often useful to decompose ttzeconnection as fol-

Upon such a result, we suggest that the z&eral curvature | .

) . i .. lows:
might be a universal property in a broader class of equilib-
rium systems including thermodynamic systems.

This paper is organized as follows. In Sec. Il we first Fiw=T{%~-
recapitulate some main expressions in information geometry,
and then we apply the expressions to thermodynamics a ith
also stochastic processes such as random walks or correlatec}
walks. Some results of Ruppeing2—4] and Janyszek and Ti(0)=EL[d,/' 0,/ 3/ 1= —E[ 30,0/ 1~ E[(3/ ) (00 )
Mrugala[5-7], and also some recent results of o[#s-10]
are reviewed, paying attention to statistical manifolds. In +(9/)(0k0i/) + (/1) 9;/)]. (5)

: @

% 2 l_a 2 2
8,/ ajﬁk/'i‘ Il ﬂj/ak/

M necessary, we express a valueaothrough the superscript
as written above.

a
3 Tk (4)
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This tensor is completely symmetric. The last equality is due B. Application to thermodynamics

to the normalization condition of probability. A metric on thermodynamic state space can be obtained

When a vector at a point is turned around alloop by theoy applying information geometry to the grand canonical
transportation rule, the vector at the same point after thejisiribution function

transportation does not in general coincide with the vector

before the transportation. The discrepancy between the two 1

vectors is measured by tlaecurvature tensor El exd —BH+aN](=exd —BH+aN-In E]), (14
Rik= =l + Tl =Tk - (6)

with the HamiltonianH and the number of particlgs. The

Qlistribution function with the parameteasand 8 constitutes

an exponential family. In the thermodynamic limit, the grand

partition functionZ is expressed by means of a thermody-

namic potentiakp:

We here use the Misner-Thorne-Wheeler convention for th
curvature sign[12]. This sign convention is opposite to
Ruppeiner'd4].

The covariant representation

Riji = 9imRiki = oI ij = AT — (Tt T T

+ (T i+ aTmi) T (7) |nE:s—_u+$pE¢, (15)

is useful. Substitution of the decompositi¢) yields

a which in turn is equal td?/T, whereV, P, andT are the
Rij =R~ > (VT = Vi%Tij) volume, pressure, and temperature of the system, andp
are the entropy, internal energy, and number density of par-
o ticles per volume. There exist also the relatiofis

+ 7 9" TmikTji = Tmir Tnjio) @)  =(kgB) randu=aB !, whereu is the chemical potential

andkg is the Boltzmann constant.
with the covariant derivative with respect to the Levi-Civita  Therefore the thermodynamic potentialyields the met-
connectionV{”. ric
Linear combination of the components of the curvature

tensor produces some scalars. In particular, the scalar

2

_PNE Ve 16
R=g''R} 9) YiTIFTOFT T Kg oF R’ (16

is important. In the case @=0, this scalar is the so-called
Riemann scalar curvature. with the coordinate systera=(1/T,— u/T). Note that the
When the formalism is applied to the exponential family thermodynamic metric is different only by the volume factor
from that used by Ruppeing4]. So our Riemann curvature
no tensor is different from Ruppeiner’s in the volume factor as
S= [ p(x, 0)[p(x, H)ZEXF{ CX)+ 2, O'Fi(x)— ( 0)} J , well as in the sign convention.
=1 The thermodynamic Riemann curvature was first evalu-

(10 ated for several cases by Ruppeifec3]. It is zero for
we have the metric monoatomic ideal classical gases, where there are no inter-
particle interactions. For many known models of interactions
P he noted the Gauss curvatugg=3R to be in excellent
9= a0 (11)  agreement with their correlation length. On the basis of such

properties he suggested that the Riemann scalar curvature
R is a measure of effective interactiofsee Ruppeinef4]
for detail9, while Janyszek and Mrugala offered another in-
rv=o. (12) terpretation[5]. They calculated the curvature for many
ik known thermodynamical moddl§—7], including the models
Hence the exponential family is zeeo=1 curvature, that is, Worked out by Ruppeiner. For instance, for the 1D Ising
RL) =0. However, the Riemann CUfVatU@(jok)| does not mode[5] they reported that th in the ferromagnetic case is

ikl = 1 . : '
vanish in general. In particular, the 2D Riemann scalar curlarger than theR in the antiferromagnetic case. For ideal

and thea=1 connection

vature may be written as follows]; guantum gasef5], they showed that thR for ideal Fermi
gases is always negative whereas for ideal Bose gases it is
b1 P U always positive and diverggs as Fhe temperature a_pp_rc_;aches
o_" 1 ’ ’ zero. For a real gd¥], theR is positive and tends to infinity
R :2_92 i Yae iz . 13 as the system approaches the critical point. Motivated by
V112 Y12 Yoo these properties, they suggested that the thermodynamic cur-

vature is a measure of the stability. Namely, the smaller the
The g is the determinant of the metric tensor. R, the more stable the system.
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C. Application to random oint, and changes to a line, and then to a homogeneous
p
or correlated-walk processes spherical surface dR= 3. The homogeneous space immedi-
We applied information geometry to nonequilibrium pro- &t€ly transforms to an inhomogeneous space. The inhomoge-
cesses such as random or correlated walks. First we treated'§'Y gradua!ly grows. a region of the mhor_nogeneous space
RW model[8], in which a walker on @ -dimensional cubic violently oscillates in time and another region expands fast.
lattice jumps from a site to one of thédD2nearest neighbors As a whole, the_ curvature of th? space decreases and soon
or stays at the same site with given jump probabilities. Th ecomes negative. Th'e oscillations have already sta}rted to
probability arriving at a site on the lattice aftdr steps is ade away. The negative curvature goes on decreasing and
characterized by the jump probabilities. We examined th&ﬁnally the space converges to a homogeneous saddle surface

curvature of the family of the arrival probabilities character- of R=—1. Such a dynamical behavior of the curvature was
ized by the jump parameters. Different from the thermody_shown to be well understoqd by the terms of stability and
namical cases, the statistical manifold develops with the steBrdFer parameter ﬁf StOChaSt'(? Processes. RGE as follows:

time N. We found an interesting result: the Riemann scalar or instance, the asymptotic expressiorkas as follows:
curvatureR approaches zero as the step tikhéncreases. In R=—1+h(p;,q,)/N (17)

the RW model, successive steps are not correlated with each -

other. Namely, the steps do not interact with each otherg,, large N. The inhomogeneity functiom(p;,q,) in the
Thus this result corresponds to the same result as ideal clagiyer N~ 2 is independent of the difference coordinate
sical gases. We noted also the decrease behavior oRthe =(p;—q,)/2, the asymmetry between rightward steps and

with the lapse of the step time. Regarding the RW process a8fyard steps, and also the function monotonically decreases

a transition process from a localized unstable state to a stablgi, respect to another coordinate=(p; +q,)/2. Note that

fRe u coordinate represents the orderliness of walks. In fact
u—1 is equivalent tq,—0 andqg;— 0. Namely, the prob-
abilities of stepping in a direction opposite to the previous
step approach zero. So a walkerwf 1 tends to move al-
most without flip-flops. Namely, the walker moves smoothly
nd regularly. We may then regard thiecoordinate as a
egularity parameter or an order parameter. Hence the Rie-
mann scalar curvatur® is small for ordered states in the
asymptotic time region. This consequence is consistent with
the interpretation of Janyszek and Mrugala for the Riemann
scalar curvature of thermodynamic systems.

vature might be a measure of stability in nonequilibrium pro-
cesses as well as in thermodynamic systems.

In successive papel®,10, we applied the same tech-
nigue to a CW modd]l13], in which a walker moves along a
linear lattice of infinite extension right or left with given
jump probabilities. The right and left steps are called steps o
type 1 and 2, respectively. If the last step is of tyjpethe
probabilities of stepping right or left are denoted jpyand
q; with the normalization conditiop; + q;= 1. (Refer to Fig.
1, in which a more general model is trage@ihe probability
of arriving at a site on the linear lattice aftdrunits of time
is characterized by two independent jump probabilities, for
instancep; andq,. We examined the curvature of the fam- IIl. STATISTICAL MANIFOLDS ASSOCIATED
ily of the arrival probabilities characterized by such two WITH A CORRELATED-WALK MODEL
jump parameters, and found the fact that the 2D Riemann oy interest is not in stochastic processes themselves but
scalar curvature approached as the step timl increases. i, statistical manifolds associated with them. We here take a
In the CW model, two successive steps are correlated WitQnown simple CW model used by Okamwetal. to discuss
each other. Namely, the range of interactions between stepge atomic diffusion in metals with impuritié44,15. In that
is of 1. Hence|R| approaches the interaction length. We noqel a walker correlatively moves or stays on a cubic lat-
have already seen that tReof the RW model approaches 0. tice The correlated walks on the 3D lattice are characterized
Those results suggest that Ruppeiner's interpretation of thgy four independent transition probabilities of jump or stay.
Riemann scalar curvature as a measure of effective interag reduce the number of independent transition probabilities,

tions may apply to the final states of stochastic processege think of the same walks on a linear lattice.
such as random or correlated walks as well as thermody-

namic systems.
Further we showed that the parameter space of the CW
model evolves through some characteristic eras: it starts at a

A. A model of walkers jumping
or staying correlatively

Suppose that a walker moves along a linear lattice of in-
finite extension right or left with given jump probabilities or

P, ’ ql — - o that the walker sometimes stays without jump. The right
step, the left step, and the stay are called steps of type 1, 2, 0,

b, == Q<< 1, O<— respectively. If the last step is of tyge the probabilities of
stepping right or left or staying are denoted py, q;, r;

Py 0—> q, <0 r, 00 with the normalization condition

p;+a;+ri=1 (j=120. (18
FIG. 1. Step probabilities with correlations. The thick arrows
and circles correspond to the steps in question and the thin arrowghe definitions of the step probabilities are shown in Fig. 1,
and circles to the last steps. The direction of each arrow is thavhere the steps in question are indicated by thick arrows or
direction of jumping and each circle represents staying. circles, and the last steps by thin arrows or circles. Two
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The probability functionQ(X,Y,N) produces the mar-
ginal distribution functions

Q(X,N)Eg Q(X,Y,N), Q(Y.N)E; Q(X,Y,N).
(22

The equations of motion for the marginal distribution func-
tions can be easily obtained by summing the fundamental
equations of motion about all values Xfor Y.

Here we do not have any interest in solving these equa-
tions of motion exactly. Even though we have exact solu-
tions, it is very difficult to calculate geometrical objects such
as the metric tensor through formul&®—(13). Hence we
will adopt a numerical method.

B. Statistical manifolds

Let S be a set of the probability function®(X,Y,N)
parametrized by the jump probabilitigs,q;,r;:

FIG. 2. Moves of a walker on a linear lattice can be represented S={Q(X,Y,N)}. (23
by outward moves of an object on the first quadrant of the cubic
lattice (X,Y,Z). Because of the normalization conditi¢h8), each function
, o ) Q(X,Y,N) in S is specified by a 6D parameted
successive steps are correlative in the meaning that the ste_.p( 61,62, ...,6% such as Pi,P2.Po,01,02,00). Since

probabilities depend on the tygeof the last steps. Q(X,N) is sufficiently smooth i, the setS has the struc-
The dynamics of the walker stepping correlatively on they e of a 6D manifold, wher@ plays the role of a coordinate
linear lattice can also be represented in a cubic lattice. Th@ystem.

walker's moves toward the right correspond to tKevard In the same way, we writ§™ for a 6D space of the
moves of an object on the cubic lattice, the walker’s MOVeSarginal probability functions parametrized by the jump
toward the left to they-ward moves, and the walker's stay probabilitiesp; ,q; . :

period to theZ-ward moves(See Fig. 2. et

Let Pj(X,Y,Z) be the probabilities of the object arriving SM={Q(X,N)} or {Q(Y,N)}. (24)
at the site K,Y,Z) with step typg afterN units of time. The
probability of the object arriving atX,Y,Z) from any direc- Numerical calculation of the curvature tensor of 6D
tion Is spaces requires a lot of computer resources. Hence let us
restrict our consideration to 3D subspaces induced by sym-
(19
Because oK+ Y+Z=N, we can regardP’s as functions of P1=d2,  P2=d1,  Po=do- (25
X, Y, andN. The new functions are denoted B These conditions and the normalization condition produce
QJ-(X,Y,N)I Pj(X,Y,Z), Q(X,Y,N)=P(X,Y,2). another symmetric relation;
(20)
I’1= I’2 . (26)
Consideration of two successive steps yields the following
relations forP; or Q;: A function in the subspaces
Q1(X,Y,N)=p;1Q1(X—1Y,N—1)+p,Qx(X—1Y,N—1) Ssw=1{Q(X,Y,N)[p1=0p, P2=01, Po=0o}, (27

+ — — = = =
PoQo(X=LY.N=1) (X=1,Y=0,N=1), S = {Q(X.N)|P1=C2. Po=01. Po=0o}, (289

Q2(X,Y,N)=0:Q1(X,Y=1N—-1)+g,Qx(X,Y—1N—-1)
+00Qo(X,Y=1N—-1) (X=0,Y=1,N=1),

or

SEW=1{Q(Y,N)[p1=0z, P2=01, Po=0o} (28D
Qo(X,Y,N)=r1Q1(X,Y,N—1)+r,Q(X,Y,N—1)
is specified by a 3D parameter such as,{,,pg), that is,
+roQo(X,Y,N=1) (X=0,Y=0,N=1). the function is characterized by two jump parameters and a
(21)  stay parameter.
Let us now foliate the 3D spac,, by the stay parameter
These are the equations of motion r(X,Y,N). ro. The foliation
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causeR contains probability functions and their parameter
derivatives up to the second derivative.

We successively solve these recursive relations and their
parameter derivatives together. We use the coordinate system
(a,B8)=(p1,p,) for a while. Iterative calculation of the basic
recursive relations and their derivatives gives the Riemann
scalar curvatureR at each step through Eq§l)—(9). Of
course, any other coordinate system should produce the same
value of the scalaR.

D. Numerical solutions
FIG. 3. Sketch of the relation among the three sp&eSqyy,
and A(rp), whose elements are the probability distribution func-
tions Q(X,Y,N). The relation of the spaces™, S{, and
AM(r ) also are all the same except that their elements are th

We have numerically evaluated the Riemann scalar cur-
vatureR on the leaveAll(r,), O<r,=<1. These 2D spaces
pucleate aN=2, as will be explained below.

marginal probability distribution function®(X,N) [or Q(Y,N)]. .Suppose that a walker st_arjgs from a state Iocaliz_ed upon a
point at N=0. Whatever initial values are assigned to
Sew= U A(rp) (29) Q1(0,0), Q,(0,0), andQy(0,0), we have ther)(0,0)=1.
SwW o<rg<1 0 This expression leads tg;;=g,,=g;,=0. Hence theN

=0 space does not extend to any direction or it degenerates
is a partitioning ofSgy, into 2D spacedA(r,). In the same 0 @ point.
way the 3D spac&ll) is foliated: At N=1, as far as a walker starts from a state localized
upon a point aN=0, we have

(m) _ (m)
Ssw o;islA (ro). (30) 0(0.1)+0Q(1,1)=1,

See Fig. 3. Q(X,)=0, X=2.
In the present paper we treat entirely the most simple ) .
case, that is, the 2D subspa&@(r,) of marginal probabil- B0th Q(0,1) andQ(1,1) are functions of coordinateg and
ity distribution functions. Details including other cases will P2- It is possible to take one of the tlwo functions as a coor-
be reported elsewhere. dinate transformation, for instance, =Q(0,1). We then
adopt a function independent €§(0,1) as another coordi-
nate 6. The new coordinate system results igy;
=1[6%(1-6Y)], 9»»=0,,=0. Thus theN=1 space also
The equations determining the marginal distribution func-has no extension to thg® direction or it degenerates to a
tion Q(X,N) in A(M(r ) are easily obtained by summing the Jine.

(32

C. A method of numerical analysis

fundamental equations of motion about all valuesyoénd At the first nondegenerate timé=2, the space has the
applying the symmetry condition, constant positive Riemann scalar curvat®e 3. This can
be proved as follows:
Q1(X,N)=aQ;(X=1IN—-1)+BQy(X—1N-1)
0,2+0Q(1,2+Q(2,2=1,
+PoQo(X—1N=1) (X=1,N=1), Q09 +Q(1A+Q(2.2) (33
X,2)=0, X=3.
Qa(X,N)=BQ1(X,N—1) +aQy(X,N~1) Q%2

+poQo(X,N—1) (X=0,N=1), (31 AnyofQ(0,2),Q(1,2), andQ(2,2) is a function ofp, and
p,. It is convenient to take two functions of them, for in-
Qo(X,N)=yQ;(X,N—1)+ yQ,(X,N—1) stance#'=Q(1,2) and#?=Q(2,2) as new coordinates. The
metric tensors in the new coordinate system are as follows:
+roQo(X,N—1) (X=0,N=1),

1 1 1 1
with a=p;=q,, B=p,=q;, y=1-a—p, and Py=1 u=1 gl gzt glr 92 1_g_gt g
—r,. The equations of motion foQ(Y,N) are given by (34)
replacingX by Y and changing and 8. Therefore the space 1
of Q(X,N) is equivalent to the space &f(Y,N). The coor- glzzmz-

dinatesa and B only interchange in both spaces. In the fol-

lowing, A™(r,) stands for the space @(X,N). It is a simple exercise to ascertain that the metric yidtds
Let us calculate the Riemann scalar curvatiReon — —1i This curvature is displayed in Fig. 4. Here we should

AM(y0) by the numerical method proposed[Bl. The new  pote the restriction

method treats the basic recursive relations and their param-

eter derivatives together. In the usual method using only the p1t+p,<1 or a+p=<l, (35)

basic equations of motion, it is necessary to evaluate the

recursive equation at three neighboring points at least, bébecause & y=1—a—g=<1.
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Q(X,N)— 78(X) + ge™ (38)
for largeN. The normalization condition of probability leads
to

&

Figure 9 is an example, which shows that @é&xX,N) atN
=1000 is in excellent agreement with the probability distri-
bution function(38).

We now have the analytical expressid83) and(38) for
the probability distribution functions. Then we can analyti-
cally calculate thea curvature. Since the family of normal
distribution functions belongs to the exponential fantily),
we have immediately

R —0 (0=<ro<1). (40

The calculation of the curvature of the leafy=1 is some-
what troublesome. We have taken advantage of a symbolic
FIG. 4. Riemann scalar curvatuReat N= 2. formula manipulation programil7]. The details of calcula-
tion are given in the Appendix. The-curvature tensor is

At N>2, we have investigated the time development of \
R at a typical point under a typical initial condition about g (1-a?) e (
many leaves. Figures(® and 3b) show R——1 (0<r, 4(1-er+§)(1-eh)?
<1) andR—3 (ro=1) at the point under the initial condi- (41)
tion. These limit values are easily imagined to be indepen- .
dent of the initial value, because the distribution function” t€(&M) coordinate system. Therefore the leafgt1 as
Q(X,N) loses the initial characteristics as the step tishe well as the leaves of €ro<1 are flat al=1.
goes by[16]. However, we do not know whether the limit
values ofR depend on the coordinate value. So we investi- IV. DISCUSSION

gated the time development of several leaves. The time de- \ya discuss the asymptotic properties of the Riemann sca-

velopment of two typical leaves,=0 and 1 is displayed in |5¢ ¢ \yrvature(36) from three different points of view and the
Figs. 6 and 7. These figures show that the homogeneo%namic behavior of that.

space atN=2 immediately deforms but ?gain approaches | ot s first discuss the asymptotic property of the Rie-
the homogeneous spaBe= —1 forro=0 orzforro=1.We a0 scalar curvature from the viewpoint of walk trajecto-
have ascertained that all leaves exagpt 1 converge to the  ias. The walker off %1 may stop temporarily but jumps

same homogeneous spacefo —1. Namely, we conclude  (ight or left again. So the path extends infinitely. On the

other hand, once the walker of=1 stops at a site, the
(36) walker is trapped there forever, and the path extends finitely.
Rl (ro=1). In other words, the paths of,# 1 are continuous, while the
2 0 paths ofry=1 are discontinuous or terminated. Thus we can

The first equation suggests the final distribution functions to3ay that the Riemann scalar curvat&associated with con-

be normal distribution functions, because the family of 1ptinuous paths is smaller than tie associated with discon-
normal distribution functions with two parameters such aginuous paths. Generally speaking, the more regular a path,
mean and variance is known to constitute a saddle surface §f¢ smaller th&k. This statement is consistent with our con-
R=—1 [11]. To prove whether this inference is right, we clusion in a previous pap¢®], which is briefly summarized
have numerically calculated the distribution functions atin Sec. Il C.

many points of many leaves, and we have ascertained Secondly we show that the Riemann scalar curvature
R’s for thery=1 statistics and they=0 statistics are very
(X—m

)2 similar to the R's for Bose-Einstein statistic§BE) and
T,z) (0=ro<1) Fermi-Dirac statistic§FD), respectively. The walker of
(37) =1 stays at a site for infinite time, while the walker of
=0 stays at most for one step time. If it is allowed to make
for large N. Figure 8 is an example, which shows that thethe stay time correspond to the occupation number in quan-
Q(X,N) at N=1000 is in excellent agreement with the nor- tum statistics, the,=1 statistics then corresponds to BE in
mal distribution function(37). which the number of particles occupying a state is unlimited,
We have calculated the distribution functions at manyand ther,=0 statistics corresponds to FD in which the oc-
points of the leaf ,=1 as well, and found these distribution cupation number is at most one. Janyszek and Mrula
functions are represented by showed that the thermodynamic Riemann scalar curvature

ik Sj1 — 6i Ojk)

Q(X,N)—(2mo?)¥? exp( -
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R is positive for BE and negative for FD. NameR,for BE  largely changes in the range of 0.¥0§<0.990. For in-

is larger tharR for FD. According to such results, they pro- stance, theR at »=0.9 becomes five orders in magnitude
posed to understand tlieas a measure of stability, because larger than theR at »=0.1. To check the large changes, we
a Fermi gas, with the effectively repulsive interactions, isrecalculated th&k using formulas(4.17) and (4.21) of Ref.
more stable than any Bose gas, with the effectively attractiv§6]. The calculation reproduced the same result for bosons
interactions. If we accept their interpretation, we can sayput a quite different result for fermions. Our numerical result
from the correspondence, that the=0 system R=—1) is is given in Table I. It should be noted that Janyszek and
more stable than the,=1 system R=31). The statement Mrugala tabulated th& in units of 20.3V ! for bosons and
seems to be reasonable, because the distribution functioms units of 203V~%(2s+1)"?! for fermions. The is the
(38) atrp=1 are different in kind from those in the range thermal wavelength anslis the spin. We used units without
0=<ry<1, which are normal distribution functions. Hence, the numerical factor 20 for the convenience of comparing the
under a small change of, the distribution functions around quantum gas systems. The table shows thaRitier fermi-
ro=1 largely change, but the distribution functions aroundons is about-0.2, while theR for bosons slowly increases

ro=0 remain in the same family.

We want to note that the CW modelsigf=1 and 0 are
similar to BE and FD in the values & as well as in the sign
of R. Janyszek and Mrugala gave a table of Bhéor chosen
values of the fugacity; for bosons and fermion&ee Table
1 in Ref. [6]). The table shows that thR for fermions

from about 0.2(at #=0.1) to 1.2 (at =0.99. The mean
value is about 0.5. Hence the CW modelg g1 and 0 are
similar to BE and FD in the values & as well in the sign.
However, there is a decisive difference; tRefor bosons
becomes infinite for—1, while theR of thery=1 statistics
is the constant of.
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FIG. 6. Time development of the Riemann scalar curvaRigf the leafry=0: () N=10, (b) N=20, (c) N=50, (d) N=100, and(e)
N=300.

As the third asymptotic property of tHe we note the fact for N—o or approaching equilibrium states. In particular,
that the CW models investigated here and in a previous pahe equilibrium distribution function(38) for the ro=1
per have a property common to thermodynamic systems. Wmodel should be noted not to be a member of the exponential
have seen that the=1 curvature of the CW models is zero family (10). As has been noted in Sec. Il, any thermody-
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FIG. 7. Time development of the Riemann scalar curvaRiaf the leafry=1: () N=10, (b) N=20, (c) N=50, (d) N=100, and(e)
N=300.

namic system has zew=1 curvature as an inevitable con- broader class of equilibrium systems including thermody-
sequence of the fact that the distribution function is a memsnamic systems.

ber of an exponential family. This fact seems to suggest that Next we proceed to discuss the dynamic behavior of the
the zeroa=1 curvature might be a universal property in a Riemann scalar curvatufR. Figures %a) and §b) show that
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0.03 r

0.02 FIG. 8. Marginal probability
' distribution  function  Q(X)
=Q(X,N) at N=1000, (p;,p2)
=(0.7,0.2),ry=0.5 under the ini-

< I /\ tial condition Q,(0,0)=Q,(0,0)
&/ FA =0.5. The dotted line stands for
P Q(X) and the dashed line for the
001 - i normal  distribution  function
i i N(m,o) of meanm=416.15 and
:' "s varianceoc=53.16.
0.00 h l . | n L / 1 . R {
0 100 200 300 X 400 500 600

theR starts at; and rapidly decreases for a short time. After away. Figure 7 also shows that there is a valley in lgaf

that, R turns to increasing and finally approaches the equi=1, which is parallel to the diagonal boundary lipe+ p,

librium value 3 or —1. It is possible to understand the early =1 connecting the near corner and the far corner of the

behavior by the interpretation of tHe as a measure of sta- p;-p, plane. The flat plane on the left side of the valley is a

bility. We suppose that any walker starts from a state localhomogeneous region &&= 3. As the step timeN goes by,

ized upon a point. Such a localized distribution function rap-the homogeneous region extends and gradually suppresses

idly spreads for a while, in general. Namely, the initial statethe valley. Finally the homogeneous region swallows the val-

is unstable. However, we could not find a satisfactory explaley, that is, the valley vanishes.

nation of the increase behavior of tRe Now we show that the dynamic characteristic of the Rie-
Figures 6 and 7 display other remarkable features in thenann scalar curvature of=0 is related to the existence of

dynamic process of the Riemann scalar curvature. Figure & runaway component that is a sharp peak at the edge of the

shows that there is a valley in the leg&=0. In the other side skirts of a diffusive maximum in probability distribution

of the valley, theR is almost homogeneous. In this side therefunctions. The existence of such a runaway component was

appears a sharp-pointed mountain. As the step thgoes  found in a model equivalent to the special caser,=0 of

by, the almost homogeneous region gradually extends, angg. (31) by Okamuraet al. [18,19. They gave the exact

becomes more and more homogeneous. The mountain bselutions with a specific initial condition, and showed that

comes increasingly sharp and thin. Finally the peak fadethe solutions have a runaway component that is associated

10° ¢
107" E
C e FIG. 9. Marginal probability
[ “ distribution function  Q(X)
102 =Q(X,N) at N=1000, (;,p,)
. F AR =(0.7,0.2), ry=1 under the ini-
bl [ R tial condition Q4(0,0)=Q5(0,0)
g ., e =0.5. The dotted line stands for
10 3 . Q(X) and the dashed line for the
s T probability distribution function
i T (39 of %=0.25, ¢=0.15, and
10% b A=5.48481.
10 1 . ] 1 1 . ! [E) -
0 10 20 30 40 50 -
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TABLE I. Riemann scalar curvature for chosen values of the

fugacity # for bosons(in units of A3V~ and fermiongin units of
Avl2s+1)71).

Riemann scalar curvatuie

7 Bosons Fermions
0.100 0.2270 —0.2158
0.300 0.2426 —0.2073
0.500 0.2669 —0.2005
0.700 0.3122 —0.1950
0.900 0.4594 —0.1903
0.910 0.4782 —0.1901
0.920 0.5025 —0.1899
0.930 0.5270 —-0.1897
0.940 0.5605 —0.1895
0.950 0.6035 —0.1893
0.960 0.6615 —0.1891
0.970 0.7465 —0.1889
0.980 0.8890 —0.1887
0.990 1.2115 —0.1885

with free passage. Recently Okamura and Miyam@o]

N 1-25+568? 45

in the case ofy=ry=0, that is,p; +p,=1 andry=0. The§
expresses the degree of correlation, defined by

6=pP1—P2. (43

For instance,N=10 for (p;,p,)=(0.8,0.2), N=65 for
(0.9,0.2, andN= 325 for (0.95,0.05. Figures 6a), 6(c), and

6(e) show that these positions are around the valley. Hence
the valley is expected to be a transition region separating a
purely diffusive region and a runaway region. To ascertain
the expectation, we draw a contour-line map of et N

=50 and a typical distribution function in each region. The
white region in Fig. 10 corresponds to the valley in Fig. 6.
On the left side of the white region whei@is small, the
distribution function is a normal distribution. On the right
side, the distribution function has a runaway component. In
the white region separating the two regions, the distribution
function does not have a flat skirts at the foot of the diffusive
maximum. As time goes by, the white region is absorbed by
the right side corner. Hence we can say that soon after the
runaway component is swallowed by the diffusive maxi-

pointed out the fact that the existence of the runaway commum, the Riemann scalar curvature becomes a homogeneous
ponent does not come from the specific initial condition butvalue R=—1.

from the correlation between steps itself. They then showed In the case ofrq=1, the dynamic characteristic of the
that the time when the runaway component is swallowed byRiemann scalar curvature is related to the existence of a dif-
the diffusive maximum is given by

Q(X)

0.20-

0.15

0.10

0.05

0.00

fusive maximum. To see it, we draw a contour-line map of

0.04
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FIG. 10. Contour map of the Riemann scalar curvafief the leafr,=0 atN=>50, and the probability distribution functiofg(X) at
some points §;,p,) =(0.3,0.4)(0.9,0.2,(0.98,0.02.
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FIG. 11. Contour map of the Riemann scalar curvatiref the leafr,=1 atN=>50, and the probability distribution functiog(X) at
some points |, ,p,) =(0.6,0.1)(0.18,0.76,(0.5,0.5.

the R at N=50 and a typical distribution function in each range is independent af,, and that theR takes the same
region.(See Fig. 11.0n the left side of the valley, the dis- value as thdR of ther,=0. The correspondence between the
tribution function has a peak &=0 and exponentially de- CW model and quantum statistics suggests examining the
cays, which is described by E(B8). On the right side of the R for interpolative statistics relating FD and BE. We plan to
valley, the function is a normal distribution. In the bottom of report on this problem elsewhere in the near future.

the valley we see a mixture of an exponential function and a
normal distribution function, and the peakXt 0 vanishes.
The difference of the distribution functions in the three re-
gions can be explained by the stepping activity r, =p, We would like to thank Dr. Y. Okamura for valuable
+p,. Around the origin p;,p,)=(0,0), the activity is comments and discussions. This work is supported in part by
small, so such a walker is immediately trapped. In othetthe Grant-in-Aid for Scientific Research from the Ministry of
words, the distribution function concentrates arodd0.  Education, Science, Sports and Cultur@rant No.
Near the border the stepping activity is about 1, so sucl®7680320.

walkers might diffuse to far sites. Hence the distribution
function is expected to be a normal distribution. In the white
region separating the two regions, the walker has the step
ac?ivity ofpsome gxtent. Then the walker might diffuse up to WITH THE PROBABILITY
some distance but the walker be trapped before long. Hence DISTRIBUTION FUNCTION  (38)
the distribution function is expected to have a diffusive |n the coordinate systerfE,\),

maximum on the way of exponential decaying. In other
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APPENDIX: g;;, 9", Tij, Riju ASSOCIATED

words, it is a mixture of a exponential-decaying function and 1
a diffusive maximum. As time goes by, the white region is g1=7—x ,
absorbed by the diagonal border. Hence we can say that soon {et—1-9)
after the diffusive maximum is trapped, the Riemann scalar
curvature becomes a homogeneous vétue;. —et

Finally we mention an interesting statistics which con- ngZ(EA_l)(e)\_l_g)’

nectsr,=0 and 1 statistics, that is, an interpolative statistics.

In the CW model, the ;=0 statistics and the,=1 statistics N o

are already connected by the continuous parametery0 _ fefe-1-9)
<1. We have already shown that tRein the intermediate 922~ [ T3 —1—¢)
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