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Curvature tensor of a statistical manifold associated with a correlated-walk model
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The curvature tensor of a statistical manifold associated with a correlated-walk model is investigated. In the
model, a walker moves along a linear lattice right or left or stays, depending on the last steps. In the case of
symmetric walks, two jump probabilities and a stay probability (r 0) specify the transition probabilities and
constitute a three-dimensional~3D! space. The 3D space is foliated by the stay probabilityr 0 . A Riemann
curvature, defined by the method of information geometry, on each 2D leaf is not only a function of two jump
parameters, but also a step timeN. The dynamic evolution of the Riemann scalar curvatureR and also the
asymptotic properties of theR in N→` are investigated in detail. It is found that remarkable features appear
in the dynamic process of theR. Such dynamic features of theR are able to be well understood in terms of the
degree of correlation or the activity of stepping. InN→`, each leaf is shown to approach the saddle surface
of R521 except for the leaf ofr 051. The exceptional leaf approaches the spherical surface ofR5

1
2. The

values ofR are shown to have relation to regularity of paths or stability of stochastic processes. The relation
to stability is also discussed by contrast with the values ofR of Fermi gases and Bose gases. It is shown that
theR’s of the leavesr 050 and 1 are almost equal to those of Fermi gases and Bose gases, respectively, and
that theR’s of the two leaves reflect the difference of the stability of the two leaves. The asymptotic property
of a one-parameter curvature, called thea curvature, is also investigated. Thea curvature ata51 is shown to
approach zero forN→` or approaching equilibrium states. This suggests that the zeroa51 curvature is a
universal property in a broader class of equilibrium systems including thermodynamic systems.
@S1063-651X~97!02707-4#

PACS number~s!: 05.70.Ln, 05.40.1j, 02.40.2k, 02.50.2r
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I. INTRODUCTION

A positive definite Riemann metric on thermodynam
state space was introduced by Ingardenet al. @1# and
Ruppeiner@2#. With the metric tensor one can evaluate t
Riemann curvature of thermodynamic state space. The t
modynamic Riemann curvature was first calculated for s
eral cases by Ruppeiner@2,3#. The calculation led him to
interpret the Riemann scalar curvature as a measure of e
tive interaction~see also Ref.@4#!. On the other hand, Jan
yszek and Mrugala@5–7# interpreted it as a measure of st
bility on the basis of calculation of the scalar curvature
many thermodynamical models, including the mod
worked out by Ruppeiner.

Recently we tried to generalize the notion of the therm
dynamic curvature as a measure of effective interaction
stability to nonequilibrium processes@8–10#. We introduced
a metric tensor on a parameter space spanned by jump p
abilities characterizing a stochastic process of random or
related walks, using the receipt of information geometry. T
metric tensor for stochastic processes, being different fr
equilibrium thermodynamic systems, develops in time. F
instance, aD-dimensional random walk~RW! accompanies
the expansion of a 2D-dimensional sphere. As a step tim
N increases, the Riemann scalar curvature fades awa
1/N. We regarded this decrease behavior of the curvatur
561063-651X/97/56~1!/213~14!/$10.00
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a geometrical representation of approach from an initial
stable state to a stable equilibrium state@8#. This interpreta-
tion is consistent with the results for equilibrium system
The curvature for stable equilibrium systems becomes sm

A walker of the RW model may move with step probabi
ties given at random, that is, without correlation betwe
steps. In reality we find correlated motion almost eve
where. In successive papers@9,10#, we examined the statis
tical manifold associated with a correlated-walk~CW!
model. The space is spanned by two parameters represe
the jump probabilities of the CW model. We there studi
the Riemann scalar curvatureR of the CW manifold, and
showed that the time development of the CW manifold p
duces inhomogeneous expansion from a spherical surfac
R5 1

2 to a saddle surface ofR521 through an era of violen
oscillations. Such behavior of the Riemann scalar curvat
was shown to be well understood in terms of ‘‘stability’’ an
‘‘order parameter’’ of stochastic processes. In other wor
the calculation suggested that the interpretation of the R
mann scalar curvature as a measure of stability might
useful in the spaces of jump probabilities as well as in th
modynamic state space.

In the present paper we take a more complicated mode
correlated walks, with an eye to investigating the space
jump probabilities characterizing the model. In the mode
walker moves along a linear lattice of infinite extension rig
213 © 1997 The American Physical Society
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or left, and sometimes stays. The probabilities of jump
stay are supposed to depend on the previous steps. Nam
two successive steps are correlated. For simplicity we c
sider the case of symmetric walking, in which the number
independent parameters specifying the transition proba
ties of jump or stay is three. The stay probability is rep
sented byr 0 . Here r 051 means that the walker stays an
stays again, andr 050 means that the walker stays and th
moves. The three-dimensional~3D! parameter space is foli
ated by the stay parameter 0<r 0<1, and each leaf is 2D
We examine the time development of the Riemann sc
curvature of each leaf and also the asymptotic propertie
the leaf.

A scenario of the Riemann scalar curvatureR is as fol-
lows. TheR of every leaf starts from a spherical surface
R5 1

2. The homogeneous space immediately deforms to
inhomogeneous space and theR rapidly decreases for a sho
time. After that, theR turns to increasing and finally ap
proaches12 for the leafr 051 and21 for the leavesr 0Þ1. In
the dynamic process of theR, we find remarkable features
The 2D space is characterized by three regions. A region
small values of theR, and the region separates the other t
regions from each other like a valley. In one side of t
valley, theR is almost homogeneous. As the step time go
by, the homogeneous region gradually extends, and beco
more and more homogeneous. The extending region
swallows the valley and also the other side. These dyna
features of theR are shown to be well understood in terms
the degree of correlation or the activity of stepping. Furth
more, the differences of the asymptotic values ofR are
shown to have relation to regularity of paths or stability
stochastic processes. We note that the paths of the walke
r 0Þ1 extend infinitely, while the paths of the walkers
r 051 extend finitely. Thus we say that theR associated with
continuous paths is smaller than theR associated with dis-
continuous paths. Generally speaking, the more regula
path the smaller theR. As another viewpoint we note that th
R’s for the leafr 051 and the leafr 050 are very similar to
theR’s of Fermi gases and Bose gases, investigated by
yszek and Mrugala@6#. They showed that the stability of th
ideal quantum gases can be measured by means of thR.
Actually we show that the difference of theR between the
two leaves can be well understood in terms of stability.

We also investigate the asymptotic property of a o
parameter curvature, called thea curvature. Thea51 cur-
vature is found to approach zero, regardless ofr 0 , in the
limit of infinite time or approaching equilibrium states. W
show also that the equilibrium distribution functions of t
r 0Þ1 leaves are members of the so-called exponential f
ily but those of the leafr 051 are not so. Meanwhile an
thermodynamic system is noted to have zeroa51 curvature.
Upon such a result, we suggest that the zeroa51 curvature
might be a universal property in a broader class of equi
rium systems including thermodynamic systems.

This paper is organized as follows. In Sec. II we fi
recapitulate some main expressions in information geome
and then we apply the expressions to thermodynamics
also stochastic processes such as random walks or corre
walks. Some results of Ruppeiner@2–4# and Janyszek and
Mrugala @5–7#, and also some recent results of ours@8–10#
are reviewed, paying attention to statistical manifolds.
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Sec. III we consider the process of a walker jumping
staying correlatively, and we introduce the statistical ma
folds associated with the process. Then a method of num
cal analysis of theR is described and the numerical solutio
are given. Thea curvature is analytically obtained. The de
tails of the calculation are given in the Appendix. In the fin
section IV we derive the scenario above on the basis of
numerical solutions and the analytic solutions.

II. INFORMATION GEOMETRY, THERMODYNAMICS,
AND STOCHASTIC PROCESSES

We first recapitulate some main expressions in inform
tion geometry necessary for us. After that, we briefly revi
some results of Ruppeiner@2–4#, Janyszek and Mrugala
@5–7#, and also some recent results of ours@8–10#.

A. Information geometry

Today information geometry@11# teaches us that a metri
and a one-parameter connection, called thea connection, can
be naturally introduced on a parametrized familyS
5$p(x,u)uuPV% of probability density functionsr(x,u),
wherex is a random variable,u is a parameter, andV is a
parameter space. Modern differential geometry provid
some elegant treatments of the spaceS. But these treatments
are not fundamental for the purposes of our research, so
follow the traditional method representing tensors by coor
nate components.

The metric tensor is defined by Fisher’s information m
trix

gi j ~u!5E@] i l ] j l #52E@] i] j l #, ~1!

with l (x,u)5 ln p(x,u), the parameter-differential operato
] i5]/]u i , and the expectation operationE@•# with respect
to the distributionr(x,u). The last equality is due to the
normalization condition of probability. The metric tens
gives an inner product for two vectors at a point.

Thea connection is defined by

G i jk~u!5EF] i l S ] j]kl 1
12a

2
] j l ]kl D G . ~2!

The connection prescribes a way of transporting a vector
point to a neighboring point. In the case ofa50, the con-
nection reduces to the so-called Levi-Civita` connection

G i jk
~0!5 1

2 ~]kgi j1] jgik2] igjk!. ~3!

If necessary, we express a value ofa through the superscrip
as written above.

It is often useful to decompose thea connection as fol-
lows:

G i jk5G i jk
~0!2

a

2
Ti jk , ~4!

with

Ti jk~u!5E@] i l ] j l ]kl #52E@] i] j]kl #2E@~]l i !~] j]kl !

1~]l j !~]k] i l !1~]l k!~] i] j l !#. ~5!
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56 215CURVATURE TENSOR OF A STATISTICAL MANIFOLD . . .
This tensor is completely symmetric. The last equality is d
to the normalization condition of probability.

When a vector at a point is turned around a loop by
transportation rule, the vector at the same point after
transportation does not in general coincide with the vec
before the transportation. The discrepancy between the
vectors is measured by thea-curvature tensor

Rjkl
i 5]kG j l

i 2] lG jk
i 1Gmk

i G j l
m2Gml

i G jk
m . ~6!

We here use the Misner-Thorne-Wheeler convention for
curvature sign@12#. This sign convention is opposite t
Ruppeiner’s@4#.

The covariant representation

Ri jkl5gimRjkl
m 5]kG i j l 2] lG i jk2~Gmik1aTmik!G j l

m

1~Gmil1aTmil!G jk
m ~7!

is useful. Substitution of the decomposition~4! yields

Ri jkl5Ri jkl
~0! 2

a

2
~¹k

~0!Ti jl 2¹ l
~0!Ti jk !

1
a2

4
gmn~TmikTn jl2TmilTn jk!, ~8!

with the covariant derivative with respect to the Levi-Civi`
connection¹k

(0) .
Linear combination of the components of the curvatu

tensor produces some scalars. In particular, the scalar

R5gjlRjkl
k ~9!

is important. In the case ofa50, this scalar is the so-calle
Riemann scalar curvature.

When the formalism is applied to the exponential fam

S5H p~x,u!up~x,u!5expFC~x!1(
i51

n

u iFi~x!2c~u!G J ,
~10!

we have the metric

gi j5
]2c

]u i]u j ~11!

and thea51 connection

G i jk
~1!50. ~12!

Hence the exponential family is zeroa51 curvature, that is,
Ri jkl
(1) 50. However, the Riemann curvatureRi jkl

(0) does not
vanish in general. In particular, the 2D Riemann scalar c
vature may be written as follows@5#:

R~0!5
21

2g2U c ,11 c ,12 c ,22

c ,111 c ,112 c ,122

c ,112 c ,122 c ,222

U . ~13!

Theg is the determinant of the metric tensor.
e
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e
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o

e
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B. Application to thermodynamics

A metric on thermodynamic state space can be obtai
by applying information geometry to the grand canonic
distribution function

1

J
exp@2bH1aN#~5exp@2bH1aN2 ln J#!, ~14!

with the HamiltonianH and the number of particlesN. The
distribution function with the parametersa andb constitutes
an exponential family. In the thermodynamic limit, the gra
partition functionJ is expressed by means of a thermod
namic potentialf:

kB
V

lnJ5S2
1

T
u1

m

T
r[f, ~15!

which in turn is equal toP/T, whereV, P, andT are the
volume, pressure, and temperature of the system.s, u, andr
are the entropy, internal energy, and number density of p
ticles per volume. There exist also the relationsT
5(kBb)21 andm5ab21, wherem is the chemical potentia
andkB is the Boltzmann constant.

Therefore the thermodynamic potentialf yields the met-
ric

gi j5
]2lnJ

]Fi]F j 5
V

KB

]2f

]Fi]F j , ~16!

with the coordinate systemF5(1/T,2m/T). Note that the
thermodynamic metric is different only by the volume fact
from that used by Ruppeiner@4#. So our Riemann curvature
tensor is different from Ruppeiner’s in the volume factor
well as in the sign convention.

The thermodynamic Riemann curvature was first eva
ated for several cases by Ruppeiner@2,3#. It is zero for
monoatomic ideal classical gases, where there are no in
particle interactions. For many known models of interactio
he noted the Gauss curvaturejG5 1

2R to be in excellent
agreement with their correlation length. On the basis of s
properties he suggested that the Riemann scalar curva
R is a measure of effective interactions~see Ruppeiner@4#
for details!, while Janyszek and Mrugala offered another
terpretation @5#. They calculated the curvature for man
known thermodynamical models@5–7#, including the models
worked out by Ruppeiner. For instance, for the 1D Isi
mode@5# they reported that theR in the ferromagnetic case i
larger than theR in the antiferromagnetic case. For ide
quantum gases@6#, they showed that theR for ideal Fermi
gases is always negative whereas for ideal Bose gases
always positive and diverges as the temperature approa
zero. For a real gas@7#, theR is positive and tends to infinity
as the system approaches the critical point. Motivated
these properties, they suggested that the thermodynamic
vature is a measure of the stability. Namely, the smaller
R, the more stable the system.



o-
te

h

th
r
y
te
la

a
e
cla
e
s
ab
cu
ro

-
a
n
s

fo
-
o
an

i
te
e
.
th
ra
s
d

C
a

ous
i-
oge-
ace
st.
soon
d to
and
rface
as
nd

nd
ses

act

us

ly

Rie-
e
ith
nn

but
e a

lat-
zed
y.
ies,

in-
r
ht
2, 0,

1,
or

wo

s
ro
th

216 56TSUNEHIRO OBATA, HIROSHI OSHIMA, AND HIROAKI HARA
C. Application to random
or correlated-walk processes

We applied information geometry to nonequilibrium pr
cesses such as random or correlated walks. First we trea
RW model@8#, in which a walker on aD-dimensional cubic
lattice jumps from a site to one of the 2D nearest neighbors
or stays at the same site with given jump probabilities. T
probability arriving at a site on the lattice afterN steps is
characterized by the jump probabilities. We examined
curvature of the family of the arrival probabilities characte
ized by the jump parameters. Different from the thermod
namical cases, the statistical manifold develops with the s
time N. We found an interesting result: the Riemann sca
curvatureR approaches zero as the step timeN increases. In
the RW model, successive steps are not correlated with e
other. Namely, the steps do not interact with each oth
Thus this result corresponds to the same result as ideal
sical gases. We noted also the decrease behavior of thR
with the lapse of the step time. Regarding the RW proces
a transition process from a localized unstable state to a st
equilibrium state, we suggested that the Riemann scalar
vature might be a measure of stability in nonequilibrium p
cesses as well as in thermodynamic systems.

In successive papers@9,10#, we applied the same tech
nique to a CW model@13#, in which a walker moves along
linear lattice of infinite extension right or left with give
jump probabilities. The right and left steps are called step
type 1 and 2, respectively. If the last step is of typej , the
probabilities of stepping right or left are denoted bypj and
qj with the normalization conditionpj1qj51. ~Refer to Fig.
1, in which a more general model is traced.! The probability
of arriving at a site on the linear lattice afterN units of time
is characterized by two independent jump probabilities,
instance,p1 andq2 . We examined the curvature of the fam
ily of the arrival probabilities characterized by such tw
jump parameters, and found the fact that the 2D Riem
scalar curvature approaches21 as the step timeN increases.
In the CW model, two successive steps are correlated w
each other. Namely, the range of interactions between s
is of 1. HenceuRu approaches the interaction length. W
have already seen that theR of the RW model approaches 0
Those results suggest that Ruppeiner’s interpretation of
Riemann scalar curvature as a measure of effective inte
tions may apply to the final states of stochastic proces
such as random or correlated walks as well as thermo
namic systems.

Further we showed that the parameter space of the
model evolves through some characteristic eras: it starts

FIG. 1. Step probabilities with correlations. The thick arrow
and circles correspond to the steps in question and the thin ar
and circles to the last steps. The direction of each arrow is
direction of jumping and each circle represents staying.
d a

e

e
-
-
p
r

ch
r.
s-

as
le
r-
-

of

r

n

th
ps

e
c-
es
y-

W
t a

point, and changes to a line, and then to a homogene
spherical surface ofR5 1

2. The homogeneous space immed
ately transforms to an inhomogeneous space. The inhom
neity gradually grows: a region of the inhomogeneous sp
violently oscillates in time and another region expands fa
As a whole, the curvature of the space decreases and
becomes negative. The oscillations have already starte
fade away. The negative curvature goes on decreasing
finally the space converges to a homogeneous saddle su
of R521. Such a dynamical behavior of the curvature w
shown to be well understood by the terms of stability a
order parameter of stochastic processes.

For instance, the asymptotic expression ofR is as follows:

R5211h~p1 ,q2!/N ~17!

for large N. The inhomogeneity functionh(p1 ,q2) in the
order N21 is independent of the difference coordinaten
5(p12q2)/2, the asymmetry between rightward steps a
leftward steps, and also the function monotonically decrea
with respect to another coordinateu5(p11q2)/2. Note that
the u coordinate represents the orderliness of walks. In f
u→1 is equivalent top2→0 andq1→0. Namely, the prob-
abilities of stepping in a direction opposite to the previo
step approach zero. So a walker ofu;1 tends to move al-
most without flip-flops. Namely, the walker moves smooth
and regularly. We may then regard theu coordinate as a
regularity parameter or an order parameter. Hence the
mann scalar curvatureR is small for ordered states in th
asymptotic time region. This consequence is consistent w
the interpretation of Janyszek and Mrugala for the Riema
scalar curvature of thermodynamic systems.

III. STATISTICAL MANIFOLDS ASSOCIATED
WITH A CORRELATED-WALK MODEL

Our interest is not in stochastic processes themselves
in statistical manifolds associated with them. We here tak
known simple CW model used by Okamuraet al. to discuss
the atomic diffusion in metals with impurities@14,15#. In that
model a walker correlatively moves or stays on a cubic
tice. The correlated walks on the 3D lattice are characteri
by four independent transition probabilities of jump or sta
To reduce the number of independent transition probabilit
we think of the same walks on a linear lattice.

A. A model of walkers jumping
or staying correlatively

Suppose that a walker moves along a linear lattice of
finite extension right or left with given jump probabilities o
that the walker sometimes stays without jump. The rig
step, the left step, and the stay are called steps of type 1,
respectively. If the last step is of typej , the probabilities of
stepping right or left or staying are denoted bypj , qj , r j
with the normalization condition

pj1qj1r j51 ~ j51,2,0!. ~18!

The definitions of the step probabilities are shown in Fig.
where the steps in question are indicated by thick arrows
circles, and the last steps by thin arrows or circles. T

ws
e
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56 217CURVATURE TENSOR OF A STATISTICAL MANIFOLD . . .
successive steps are correlative in the meaning that the
probabilities depend on the typej of the last steps.

The dynamics of the walker stepping correlatively on t
linear lattice can also be represented in a cubic lattice.
walker’s moves toward the right correspond to theX-ward
moves of an object on the cubic lattice, the walker’s mov
toward the left to theY-ward moves, and the walker’s sta
period to theZ-ward moves.~See Fig. 2.!

Let Pj (X,Y,Z) be the probabilities of the object arrivin
at the site (X,Y,Z) with step typej afterN units of time. The
probability of the object arriving at (X,Y,Z) from any direc-
tion is

P~X,Y,Z!5P1~X,Y,Z!1P2~X,Y,Z!1P0~X,Y,Z!.
~19!

Because ofX1Y1Z5N, we can regardP’s as functions of
X, Y, andN. The new functions are denoted byQ:

Qj~X,Y,N!5Pj~X,Y,Z!, Q~X,Y,N!5P~X,Y,Z!.
~20!

Consideration of two successive steps yields the follow
relations forPj or Qj :

Q1~X,Y,N!5p1Q1~X21,Y,N21!1p2Q2~X21,Y,N21!

1p0Q0~X21,Y,N21! ~X>1,Y>0,N>1!,

Q2~X,Y,N!5q1Q1~X,Y21,N21!1q2Q2~X,Y21,N21!

1q0Q0~X,Y21,N21! ~X>0,Y>1,N>1!,

Q0~X,Y,N!5r 1Q1~X,Y,N21!1r 2Q2~X,Y,N21!

1r 0Q0~X,Y,N21! ~X>0,Y>0,N>1!.

~21!

These are the equations of motion forQi(X,Y,N).

FIG. 2. Moves of a walker on a linear lattice can be represen
by outward moves of an object on the first quadrant of the cu
lattice (X,Y,Z).
tep

e

s

g

The probability functionQ(X,Y,N) produces the mar-
ginal distribution functions

Q~X,N![(
Y

Q~X,Y,N!, Q~Y,N![(
X

Q~X,Y,N!.

~22!

The equations of motion for the marginal distribution fun
tions can be easily obtained by summing the fundame
equations of motion about all values ofX or Y.

Here we do not have any interest in solving these eq
tions of motion exactly. Even though we have exact so
tions, it is very difficult to calculate geometrical objects su
as the metric tensor through formulas~1!–~13!. Hence we
will adopt a numerical method.

B. Statistical manifolds

Let S be a set of the probability functionsQ(X,Y,N)
parametrized by the jump probabilitiespj ,qj ,r j :

S5$Q~X,Y,N!%. ~23!

Because of the normalization condition~18!, each function
Q(X,Y,N) in S is specified by a 6D parameteru
5(u1,u2, . . . ,u6) such as (p1 ,p2 ,p0 ,q1 ,q2 ,q0). Since
Q(X,N) is sufficiently smooth inu, the setS has the struc-
ture of a 6D manifold, whereu plays the role of a coordinate
system.

In the same way, we writeS(m) for a 6D space of the
marginal probability functions parametrized by the jum
probabilitiespj ,qj ,r j :

S~m!5$Q~X,N!% or $Q~Y,N!%. ~24!

Numerical calculation of the curvature tensor of 6
spaces requires a lot of computer resources. Hence le
restrict our consideration to 3D subspaces induced by s
metric walk:

p15q2 , p25q1 , p05q0 . ~25!

These conditions and the normalization condition produ
another symmetric relation;

r 15r 2 . ~26!

A function in the subspaces

SSW5$Q~X,Y,N!up15q2 , p25q1 , p05q0%, ~27!

SSW
~m!5$Q~X,N!up15q2 , p25q1 , p05q0%, ~28a!

or

SSW
~m!5$Q~Y,N!up15q2 , p25q1 , p05q0% ~28b!

is specified by a 3D parameter such as (p1 ,p2 ,p0), that is,
the function is characterized by two jump parameters an
stay parameter.

Let us now foliate the 3D spaceSSW by the stay paramete
r 0 . The foliation

d
ic
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SSW5 ø
0<r0<1

A~r 0! ~29!

is a partitioning ofSSW into 2D spacesA(r 0). In the same
way the 3D spaceSSW

(m) is foliated:

SSW
~m!5 ø

0<r0<1
A~m!~r 0!. ~30!

See Fig. 3.
In the present paper we treat entirely the most sim

case, that is, the 2D subspaceA(m)(r 0) of marginal probabil-
ity distribution functions. Details including other cases w
be reported elsewhere.

C. A method of numerical analysis

The equations determining the marginal distribution fun
tionQ(X,N) in A(m)(r 0) are easily obtained by summing th
fundamental equations of motion about all values ofY and
applying the symmetry condition,

Q1~X,N!5aQ1~X21,N21!1bQ2~X21,N21!

1p0Q0~X21,N21! ~X>1,N>1!,

Q2~X,N!5bQ1~X,N21!1aQ2~X,N21!

1p0Q0~X,N21! ~X>0,N>1!, ~31!

Q0~X,N!5gQ1~X,N21!1gQ2~X,N21!

1r 0Q0~X,N21! ~X>0, N>1!,

with a[p15q2 , b[p25q1 , g[12a2b, and 2p051
2r 0 . The equations of motion forQ(Y,N) are given by
replacingX by Y and changinga andb. Therefore the space
of Q(X,N) is equivalent to the space ofQ(Y,N). The coor-
dinatesa andb only interchange in both spaces. In the fo
lowing, A(m)(r 0) stands for the space ofQ(X,N).

Let us calculate the Riemann scalar curvatureR on
A(m)(r 0) by the numerical method proposed in@9#. The new
method treats the basic recursive relations and their par
eter derivatives together. In the usual method using only
basic equations of motion, it is necessary to evaluate
recursive equation at three neighboring points at least,

FIG. 3. Sketch of the relation among the three spacesS, SSW,
and A(r 0), whose elements are the probability distribution fun
tions Q(X,Y,N). The relation of the spacesS(m), SSW

(m) , and
A(m)(r 0) also are all the same except that their elements are
marginal probability distribution functionsQ(X,N) @or Q(Y,N)#.
e

-

m-
e
e
e-

causeR contains probability functions and their parame
derivatives up to the second derivative.

We successively solve these recursive relations and t
parameter derivatives together. We use the coordinate sy
(a,b)[(p1 ,p2) for a while. Iterative calculation of the basi
recursive relations and their derivatives gives the Riem
scalar curvatureR at each step through Eqs.~1!–~9!. Of
course, any other coordinate system should produce the s
value of the scalarR.

D. Numerical solutions

We have numerically evaluated the Riemann scalar c
vatureR on the leavesASW

(m)(r 0), 0<r 0<1. These 2D space
nucleate atN52, as will be explained below.

Suppose that a walker starts from a state localized upo
point at N50. Whatever initial values are assigned
Q1(0,0), Q2(0,0), andQ0(0,0), we have thenQ(0,0)51.
This expression leads tog115g225g1250. Hence theN
50 space does not extend to any direction or it degener
to a point.

At N51, as far as a walker starts from a state localiz
upon a point atN50, we have

Q~0,1!1Q~1,1!51,
~32!

Q~X,1!50, X>2.

BothQ(0,1) andQ(1,1) are functions of coordinatesp1 and
p2 . It is possible to take one of the two functions as a co
dinate transformation, for instance,u15Q(0,1). We then
adopt a function independent ofQ(0,1) as another coordi
nate u2. The new coordinate system results ing11
51/@u1(12u1)#, g225g1250. Thus theN51 space also
has no extension to theu2 direction or it degenerates to
line.

At the first nondegenerate timeN52, the space has th
constant positive Riemann scalar curvatureR5 1

2. This can
be proved as follows:

Q~0,2!1Q~1,2!1Q~2,2!51,
~33!

Q~X,2!50, X>3.

Any of Q(0,2), Q(1,2), andQ(2,2) is a function ofp1 and
p2 . It is convenient to take two functions of them, for in
stance,u15Q(1,2) andu25Q(2,2) as new coordinates. Th
metric tensors in the new coordinate system are as follo

g115
1

12u12u2
1

1

u1
, g225

1

12u12u2
1

1

u2
,

~34!

g125
1

12u12u2
.

It is a simple exercise to ascertain that the metric yieldsR
5 1

2. This curvature is displayed in Fig. 4. Here we shou
note the restriction

p11p2<1 or a1b<1, ~35!

because 0<g512a2b<1.

e
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At N.2, we have investigated the time development
R at a typical point under a typical initial condition abo
many leaves. Figures 5~a! and 5~b! show R→21 (0<r 0
,1) andR→ 1

2 (r 051) at the point under the initial condi
tion. These limit values are easily imagined to be indep
dent of the initial value, because the distribution functi
Q(X,N) loses the initial characteristics as the step timeN
goes by@16#. However, we do not know whether the lim
values ofR depend on the coordinate value. So we inve
gated the time development of several leaves. The time
velopment of two typical leavesr 050 and 1 is displayed in
Figs. 6 and 7. These figures show that the homogene
space atN52 immediately deforms but again approach
the homogeneous spaceR521 for r 050 or 12 for r 051. We
have ascertained that all leaves exceptr 051 converge to the
same homogeneous space ofR521. Namely, we conclude

R→21 ~0<r 0,1!,
~36!

R→ 1
2 ~r 051!.

The first equation suggests the final distribution functions
be normal distribution functions, because the family of 1
normal distribution functions with two parameters such
mean and variance is known to constitute a saddle surfac
R521 @11#. To prove whether this inference is right, w
have numerically calculated the distribution functions
many points of many leaves, and we have ascertained

Q~X,N!→~2ps2!1/2 expS 2
~X2m!2

2s2 D ~0<r 0,1!

~37!

for largeN. Figure 8 is an example, which shows that t
Q(X,N) atN51000 is in excellent agreement with the no
mal distribution function~37!.

We have calculated the distribution functions at ma
points of the leafr 051 as well, and found these distributio
functions are represented by

FIG. 4. Riemann scalar curvatureR at N52.
f
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Q~X,N!→hd~X!1je2lX ~38!

for largeN. The normalization condition of probability lead
to

h1
j

e2l21
51. ~39!

Figure 9 is an example, which shows that theQ(X,N) at N
51000 is in excellent agreement with the probability dist
bution function~38!.

We now have the analytical expressions~37! and~38! for
the probability distribution functions. Then we can analy
cally calculate thea curvature. Since the family of norma
distribution functions belongs to the exponential family~10!,
we have immediately

Ri jkl
~1!→0 ~0<r 0,1!. ~40!

The calculation of thea curvature of the leafr 051 is some-
what troublesome. We have taken advantage of a symb
formula manipulation program@17#. The details of calcula-
tion are given in the Appendix. Thea-curvature tensor is

Ri jkl
~a!→~12a2!

el

4~12el1j!~12el!3
~d ikd j l2d i ld jk!

~41!

in the ~j,l! coordinate system. Therefore the leaf ofr 051 as
well as the leaves of 0<r 0,1 are flat ata51.

IV. DISCUSSION

We discuss the asymptotic properties of the Riemann s
lar curvature~36! from three different points of view and th
dynamic behavior of that.

Let us first discuss the asymptotic property of the R
mann scalar curvature from the viewpoint of walk trajec
ries. The walker ofr 0Þ1 may stop temporarily but jump
right or left again. So the path extends infinitely. On t
other hand, once the walker ofr 051 stops at a site, the
walker is trapped there forever, and the path extends finit
In other words, the paths ofr 0Þ1 are continuous, while the
paths ofr 051 are discontinuous or terminated. Thus we c
say that the Riemann scalar curvatureR associated with con-
tinuous paths is smaller than theR associated with discon
tinuous paths. Generally speaking, the more regular a p
the smaller theR. This statement is consistent with our co
clusion in a previous paper@9#, which is briefly summarized
in Sec. II C.

Secondly we show that the Riemann scalar curvat
R’s for the r 051 statistics and ther 050 statistics are very
similar to the R’s for Bose-Einstein statistics~BE! and
Fermi-Dirac statistics~FD!, respectively. The walker ofr 0
51 stays at a site for infinite time, while the walker ofr 0
50 stays at most for one step time. If it is allowed to ma
the stay time correspond to the occupation number in qu
tum statistics, ther 051 statistics then corresponds to BE
which the number of particles occupying a state is unlimit
and ther 050 statistics corresponds to FD in which the o
cupation number is at most one. Janyszek and Mrugala@6#
showed that the thermodynamic Riemann scalar curva
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FIG. 5. Time development of
the Riemann scalar curvatureR at
the coordinate (p1 ,p2)5(0.4,0.4)
under the initial condition
Q1(0,0)5Q2(0,0)50.5: ~a! r 0
50.0,04,0.6,0.8,0.9; ~b! r 0
50.99,0.999,1.0.
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R is positive for BE and negative for FD. Namely,R for BE
is larger thanR for FD. According to such results, they pro
posed to understand theR as a measure of stability, becau
a Fermi gas, with the effectively repulsive interactions,
more stable than any Bose gas, with the effectively attrac
interactions. If we accept their interpretation, we can s
from the correspondence, that ther 050 system (R521) is
more stable than ther 051 system (R5 1

2). The statement
seems to be reasonable, because the distribution func
~38! at r 051 are different in kind from those in the rang
0<r 0,1, which are normal distribution functions. Henc
under a small change ofr 0 , the distribution functions around
r 051 largely change, but the distribution functions arou
r 050 remain in the same family.

We want to note that the CW models ofr 051 and 0 are
similar to BE and FD in the values ofR as well as in the sign
of R. Janyszek and Mrugala gave a table of theR for chosen
values of the fugacityh for bosons and fermions~see Table
1 in Ref. @6#!. The table shows that theR for fermions
e
,

ns

largely changes in the range of 0.100,h,0.990. For in-
stance, theR at h50.9 becomes five orders in magnitud
larger than theR at h50.1. To check the large changes, w
recalculated theR using formulas~4.17! and ~4.21! of Ref.
@6#. The calculation reproduced the same result for bos
but a quite different result for fermions. Our numerical res
is given in Table I. It should be noted that Janyszek a
Mrugala tabulated theR in units of 20l3V21 for bosons and
in units of 20l3V21(2s11)21 for fermions. Thel is the
thermal wavelength ands is the spin. We used units withou
the numerical factor 20 for the convenience of comparing
quantum gas systems. The table shows that theR for fermi-
ons is about20.2, while theR for bosons slowly increase
from about 0.2~at h50.1! to 1.2 ~at h50.99!. The mean
value is about 0.5. Hence the CW models ofr 051 and 0 are
similar to BE and FD in the values ofR as well in the sign.
However, there is a decisive difference; theR for bosons
becomes infinite forh→1, while theR of the r 051 statistics
is the constant of12.
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FIG. 6. Time development of the Riemann scalar curvatureR of the leafr 050: ~a! N510, ~b! N520, ~c! N550, ~d! N5100, and~e!
N5300.
p
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As the third asymptotic property of theR we note the fact
that the CW models investigated here and in a previous
per have a property common to thermodynamic systems.
have seen that thea51 curvature of the CW models is zer
a-
e

for N→` or approaching equilibrium states. In particula
the equilibrium distribution function~38! for the r 051
model should be noted not to be a member of the expone
family ~10!. As has been noted in Sec. II, any thermod
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FIG. 7. Time development of the Riemann scalar curvatureR of the leafr 051: ~a! N510, ~b! N520, ~c! N550, ~d! N5100, and~e!
N5300.
-
m
th
a

y-

the
namic system has zeroa51 curvature as an inevitable con
sequence of the fact that the distribution function is a me
ber of an exponential family. This fact seems to suggest
the zeroa51 curvature might be a universal property in
-
at

broader class of equilibrium systems including thermod
namic systems.

Next we proceed to discuss the dynamic behavior of
Riemann scalar curvatureR. Figures 5~a! and 5~b! show that



r

56 223CURVATURE TENSOR OF A STATISTICAL MANIFOLD . . .
FIG. 8. Marginal probability
distribution function Q(X)
[Q(X,N) at N51000, (p1 ,p2)
5(0.7,0.2),r 050.5 under the ini-
tial condition Q1(0,0)5Q2(0,0)
50.5. The dotted line stands fo
Q(X) and the dashed line for the
normal distribution function
N(m,s) of meanm5416.15 and
variances553.16.
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theR starts at12 and rapidly decreases for a short time. Aft
that,R turns to increasing and finally approaches the eq
librium value 1

2 or 21. It is possible to understand the ear
behavior by the interpretation of theR as a measure of sta
bility. We suppose that any walker starts from a state loc
ized upon a point. Such a localized distribution function ra
idly spreads for a while, in general. Namely, the initial sta
is unstable. However, we could not find a satisfactory exp
nation of the increase behavior of theR.

Figures 6 and 7 display other remarkable features in
dynamic process of the Riemann scalar curvature. Figu
shows that there is a valley in the leafr 050. In the other side
of the valley, theR is almost homogeneous. In this side the
appears a sharp-pointed mountain. As the step timeN goes
by, the almost homogeneous region gradually extends,
becomes more and more homogeneous. The mountain
comes increasingly sharp and thin. Finally the peak fa
i-

l-
-

-

e
6

nd
e-
s

away. Figure 7 also shows that there is a valley in leafr 0
51, which is parallel to the diagonal boundary linep11p2
51 connecting the near corner and the far corner of
p1-p2 plane. The flat plane on the left side of the valley is
homogeneous region ofR5 1

2. As the step timeN goes by,
the homogeneous region extends and gradually suppre
the valley. Finally the homogeneous region swallows the v
ley, that is, the valley vanishes.

Now we show that the dynamic characteristic of the R
mann scalar curvature ofr 050 is related to the existence o
a runaway component that is a sharp peak at the edge o
skirts of a diffusive maximum in probability distribution
functions. The existence of such a runaway component
found in a model equivalent to the special caseg5r 050 of
Eq. ~31! by Okamuraet al. @18,19#. They gave the exac
solutions with a specific initial condition, and showed th
the solutions have a runaway component that is associ
r

FIG. 9. Marginal probability
distribution function Q(X)
[Q(X,N) at N51000, (p1 ,p2)
5(0.7,0.2), r 051 under the ini-
tial condition Q1(0,0)5Q2(0,0)
50.5. The dotted line stands fo
Q(X) and the dashed line for the
probability distribution function
~38! of h50.25, j50.15, and
l55.484 81.
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with free passage. Recently Okamura and Miyamoto@20#
pointed out the fact that the existence of the runaway co
ponent does not come from the specific initial condition b
from the correlation between steps itself. They then show
that the time when the runaway component is swallowed
the diffusive maximum is given by

TABLE I. Riemann scalar curvatureR for chosen values of the
fugacityh for bosons~in units ofl3V21 and fermions@in units of
l3V21(2s11)21#.

h

Riemann scalar curvatureR

Bosons Fermions

0.100 0.2270 20.2158
0.300 0.2426 20.2073
0.500 0.2669 20.2005
0.700 0.3122 20.1950
0.900 0.4594 20.1903
0.910 0.4782 20.1901
0.920 0.5025 20.1899
0.930 0.5270 20.1897
0.940 0.5605 20.1895
0.950 0.6035 20.1893
0.960 0.6615 20.1891
0.970 0.7465 20.1889
0.980 0.8890 20.1887
0.990 1.2115 20.1885
-
t
d
y

N5
122d15d2

~12d!2
~42!

in the case ofg5r 050, that is,p11p251 andr 050. Thed
expresses the degree of correlation, defined by

d5p12p2 . ~43!

For instance,N510 for (p1 ,p2)5(0.8,0.2), N565 for
~0.9,0.1!, andN5325 for ~0.95,0.05!. Figures 6~a!, 6~c!, and
6~e! show that these positions are around the valley. He
the valley is expected to be a transition region separatin
purely diffusive region and a runaway region. To ascert
the expectation, we draw a contour-line map of theR at N
550 and a typical distribution function in each region. T
white region in Fig. 10 corresponds to the valley in Fig.
On the left side of the white region whered is small, the
distribution function is a normal distribution. On the rig
side, the distribution function has a runaway component
the white region separating the two regions, the distribut
function does not have a flat skirts at the foot of the diffus
maximum. As time goes by, the white region is absorbed
the right side corner. Hence we can say that soon after
runaway component is swallowed by the diffusive ma
mum, the Riemann scalar curvature becomes a homogen
valueR521.

In the case ofr 051, the dynamic characteristic of th
Riemann scalar curvature is related to the existence of a
fusive maximum. To see it, we draw a contour-line map
FIG. 10. Contour map of the Riemann scalar curvatureR of the leafr 050 atN550, and the probability distribution functionsQ(X) at
some points (p1 ,p2)5(0.3,0.4),~0.9,0.1!,~0.98,0.02!.
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FIG. 11. Contour map of the Riemann scalar curvatureR of the leafr 051 atN550, and the probability distribution functionsQ(X) at
some points (p1 ,p2)5(0.6,0.1),~0.18,0.76!,~0.5,0.5!.
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the R at N550 and a typical distribution function in eac
region.~See Fig. 11.! On the left side of the valley, the dis
tribution function has a peak atX50 and exponentially de
cays, which is described by Eq.~38!. On the right side of the
valley, the function is a normal distribution. In the bottom
the valley we see a mixture of an exponential function an
normal distribution function, and the peak atX50 vanishes.
The difference of the distribution functions in the three
gions can be explained by the stepping activity 12r 15p1
1p2 . Around the origin (p1 ,p2)5(0,0), the activity is
small, so such a walker is immediately trapped. In ot
words, the distribution function concentrates aroundX50.
Near the border the stepping activity is about 1, so s
walkers might diffuse to far sites. Hence the distributi
function is expected to be a normal distribution. In the wh
region separating the two regions, the walker has the
activity of some extent. Then the walker might diffuse up
some distance but the walker be trapped before long. He
the distribution function is expected to have a diffusi
maximum on the way of exponential decaying. In oth
words, it is a mixture of a exponential-decaying function a
a diffusive maximum. As time goes by, the white region
absorbed by the diagonal border. Hence we can say that
after the diffusive maximum is trapped, the Riemann sca
curvature becomes a homogeneous valueR5 1

2.
Finally we mention an interesting statistics which co

nectsr 050 and 1 statistics, that is, an interpolative statisti
In the CW model, ther 050 statistics and ther 051 statistics
are already connected by the continuous parameter 0<r 0
<1. We have already shown that theR in the intermediate
a

-

r

h

ep

ce

r
d

on
r

-
.

range is independent ofr 0 , and that theR takes the same
value as theR of the r 050. The correspondence between t
CW model and quantum statistics suggests examining
R for interpolative statistics relating FD and BE. We plan
report on this problem elsewhere in the near future.
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APPENDIX: gij , g
ij , Tijk , Rijkl ASSOCIATED

WITH THE PROBABILITY
DISTRIBUTION FUNCTION „38…

In the coordinate system~j,l!,

g115
1

j~el212j!
,

g125
2el

~el21!~el212j!
,

g225
jel~e2l212j!

~el21!3~el212j!
,
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g115jF 2 f21

~ f21!2
2j G ,

g125
1

~ f21!2
,

g225
1

j f ~ f21!2
,

T1115
1

~h1j!2
~12 f !31

1

j2
~ f21!,

T1125
1

~h1j!2
j f ~ f21!32

1

j
f ~ f21!,

T1225
1

~h1j!2
j2f 2~ f21!31 f ~ f21!~2 f21!,
en

nd
T2225
1

~h1j!2
j3f 3~ f21!32j f ~ f21!~6 f 226 f11!,

R1212
~0! 5

1

4

el

~12el!3~12el1j!
,

1

4
gmn~Tm11Tn222Tm12Tn12!52R1212

~0! ,

21

2
~¹k

~0!Ti jl 2¹ l
~0!Ti jk !50,

Ri jkl
~a! 5

12a2

4

el

~12el!3~12el1j!
~d ikd j l2d i ld jk!.
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